83 research outputs found

    Measuring Thematic Fit with Distributional Feature Overlap

    Full text link
    In this paper, we introduce a new distributional method for modeling predicate-argument thematic fit judgments. We use a syntax-based DSM to build a prototypical representation of verb-specific roles: for every verb, we extract the most salient second order contexts for each of its roles (i.e. the most salient dimensions of typical role fillers), and then we compute thematic fit as a weighted overlap between the top features of candidate fillers and role prototypes. Our experiments show that our method consistently outperforms a baseline re-implementing a state-of-the-art system, and achieves better or comparable results to those reported in the literature for the other unsupervised systems. Moreover, it provides an explicit representation of the features characterizing verb-specific semantic roles.Comment: 9 pages, 2 figures, 5 tables, EMNLP, 2017, thematic fit, selectional preference, semantic role, DSMs, Distributional Semantic Models, Vector Space Models, VSMs, cosine, APSyn, similarity, prototyp

    Is Structure Necessary for Modeling Argument Expectations in Distributional Semantics?

    Full text link
    Despite the number of NLP studies dedicated to thematic fit estimation, little attention has been paid to the related task of composing and updating verb argument expectations. The few exceptions have mostly modeled this phenomenon with structured distributional models, implicitly assuming a similarly structured representation of events. Recent experimental evidence, however, suggests that human processing system could also exploit an unstructured "bag-of-arguments" type of event representation to predict upcoming input. In this paper, we re-implement a traditional structured model and adapt it to compare the different hypotheses concerning the degree of structure in our event knowledge, evaluating their relative performance in the task of the argument expectations update.Comment: conference paper, IWC

    What a Nerd! Beating Students and Vector Cosine in the ESL and TOEFL Datasets

    Full text link
    In this paper, we claim that Vector Cosine, which is generally considered one of the most efficient unsupervised measures for identifying word similarity in Vector Space Models, can be outperformed by a completely unsupervised measure that evaluates the extent of the intersection among the most associated contexts of two target words, weighting such intersection according to the rank of the shared contexts in the dependency ranked lists. This claim comes from the hypothesis that similar words do not simply occur in similar contexts, but they share a larger portion of their most relevant contexts compared to other related words. To prove it, we describe and evaluate APSyn, a variant of Average Precision that, independently of the adopted parameters, outperforms the Vector Cosine and the co-occurrence on the ESL and TOEFL test sets. In the best setting, APSyn reaches 0.73 accuracy on the ESL dataset and 0.70 accuracy in the TOEFL dataset, beating therefore the non-English US college applicants (whose average, as reported in the literature, is 64.50%) and several state-of-the-art approaches.Comment: in LREC 201

    Unsupervised Measure of Word Similarity: How to Outperform Co-occurrence and Vector Cosine in VSMs

    Full text link
    In this paper, we claim that vector cosine, which is generally considered among the most efficient unsupervised measures for identifying word similarity in Vector Space Models, can be outperformed by an unsupervised measure that calculates the extent of the intersection among the most mutually dependent contexts of the target words. To prove it, we describe and evaluate APSyn, a variant of the Average Precision that, without any optimization, outperforms the vector cosine and the co-occurrence on the standard ESL test set, with an improvement ranging between +9.00% and +17.98%, depending on the number of chosen top contexts.Comment: in AAAI 2016. arXiv admin note: substantial text overlap with arXiv:1603.0870

    The CogALex-V Shared Task on the Corpus-Based Identification of Semantic Relations

    Get PDF
    The shared task of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V) aims at providing a common benchmark for testing current corpus-based methods for the identifica- tion of lexical semantic relations ( synonymy , antonymy , hypernymy , part-whole meronymy ) and at gaining a better understanding of their respective strengths and weaknesses. The shared task uses a challenging dataset extracted from EVALution 1.0 (Santus et al., 2015b), which contains word pairs holding the above-mentioned relations as well as semantically unrelated control items ( random ). The task is split into two subtasks: (i) identification of related word pairs vs. unre- lated ones; (ii) classification of the word pairs according to their semantic relation. This paper describes the subtasks, the dataset, the evaluation metrics, the seven participating systems and their results. The best performing system in subtask 1 is GHHH ( F 1 = 0 . 790 ), while the best system in subtask 2 is LexNet ( F 1 = 0 . 445 ). The dataset and the task description are available at https://sites.google.com/site/cogalex2016/home/shared-task

    Taking Antonymy Mask off in Vector Space

    Get PDF

    Taking antonymy mask off in vector space

    Get PDF
    Automatic detection of antonymy is an important task in Natural Language Processing (NLP) for Information Retrieval (IR), Ontology Learning (OL) and many other semantic applications. However, current unsupervised approaches to antonymy detection are still not fully effective because they cannot discriminate antonyms from synonyms. In this paper, we introduce APAnt, a new Average-Precision-based measure for the unsupervised discrimination of antonymy from synonymy using Distributional Semantic Models (DSMs). APAnt makes use of Average Precision to estimate the extent and salience of the intersection among the most descriptive contexts of two target words. Evaluation shows that the proposed method is able to distinguish antonyms and synonyms with high accuracy across different parts of speech, including nouns, adjectives and verbs. APAnt outperforms the vector cosine and a baseline model implementing the co-occurrence hypothesis

    Extensive Evaluation of Transformer-based Architectures for Adverse Drug Events Extraction

    Full text link
    Adverse Event (ADE) extraction is one of the core tasks in digital pharmacovigilance, especially when applied to informal texts. This task has been addressed by the Natural Language Processing community using large pre-trained language models, such as BERT. Despite the great number of Transformer-based architectures used in the literature, it is unclear which of them has better performances and why. Therefore, in this paper we perform an extensive evaluation and analysis of 19 Transformer-based models for ADE extraction on informal texts. We compare the performance of all the considered models on two datasets with increasing levels of informality (forums posts and tweets). We also combine the purely Transformer-based models with two commonly-used additional processing layers (CRF and LSTM), and analyze their effect on the models performance. Furthermore, we use a well-established feature importance technique (SHAP) to correlate the performance of the models with a set of features that describe them: model category (AutoEncoding, AutoRegressive, Text-to-Text), pretraining domain, training from scratch, and model size in number of parameters. At the end of our analyses, we identify a list of take-home messages that can be derived from the experimental data

    AILAB-Udine@SMM4H 22: Limits of Transformers and BERT Ensembles

    Full text link
    This paper describes the models developed by the AILAB-Udine team for the SMM4H 22 Shared Task. We explored the limits of Transformer based models on text classification, entity extraction and entity normalization, tackling Tasks 1, 2, 5, 6 and 10. The main take-aways we got from participating in different tasks are: the overwhelming positive effects of combining different architectures when using ensemble learning, and the great potential of generative models for term normalization.Comment: Shared Task, SMM4H, Transformer
    corecore